Governing Digitally Integrated Genetic Resources, Data, and Literature

GLOBAL INTELLECTUAL PROPERTY STRATEGIES FOR A REDESIGNED MICROBIAL RESEARCH COMMONS

JEROME H. REICHMAN
Duke University School of Law

PAUL F. UHLIR
National Academy of Sciences

TOM DEDEURWAERDERE
Université catholique de Louvain

CAMBRIDGE UNIVERSITY PRESS
GOVERNING DIGITALLY INTEGRATED GENETIC RESOURCES, DATA, AND LITERATURE

The free exchange of microbial genetic information is an established public good, facilitating research on medicines, agriculture, and climate change. However, over the past quarter-century, access to genetic resources has been hindered by intellectual property claims emanating from developed countries under the World Trade Organization's TRIPS Agreement (1994) and by claims of sovereign rights from developing countries under the Convention on Biological Diversity (CBD) (1992). In this volume, the authors examine the scientific community's responses to these obstacles and advise policymakers on how to harness provisions of the Nagoya Protocol (2010) that allow multilateral measures to support research. By pooling microbial materials, data, and literature in a carefully designed transnational e-infrastructure, the scientific community can facilitate access to essential research assets while simultaneously reinforcing the open access movement. The original empirical surveys included here provide a valuable addition to the literature on governing scientific knowledge commons.

Jerome H. Reichman is the Bunyan S. Womble Professor of Law at Duke University School of Law. His research deals with the impact of intellectual property on public health, developing countries, and global science policy. He is the coauthor most recently of Intellectual Property Rights: Legal and Economic Challenges for Development (2014).

Paul F. Uhlir, J.D. was Director of the Board on Research Data and Information at the National Academies in Washington, DC, and of the U.S. CODATA until the end of 2014. He is currently a Scholar at the National Academy of Sciences and a consultant on data management.

Tom Dedeurwaerdere is Director of the Biodiversity Governance Unit and professor of philosophy of science at the Université catholique de Louvain. The editor of two books on the global environmental commons, he was recently awarded a grant from the European Research Council for a project on governing the global genetic resource commons.
Contents

Preface vii
Acknowledgments xxi

1 Uncertain Legal Status of Microbial Genetic Resources in a Conflicted Geopolitical Environment 1
 I. Introduction 1
 II. The Changing Nature of Microbial Research 7
 A. The “Wet Lab” Era 8
 B. The Revolution in Genetic Science 10
 C. Cutting-Edge Applications of Microbiology in Response to Major Global Challenges 13
 1. Improving Human Health and Mitigating Pandemics 14
 2. Enhancing Agricultural Production and Food Security 16
 3. Protecting the Natural Environment and Conserving Biodiversity 17
 4. Addressing the Energy Challenge by Producing Biofuels 18
 D. A New Research Paradigm for the Life Sciences 19
 III. Limits of the Emerging Movement to Digitally Integrate Research Inputs into the “New Biology” 22
 A. Recognizing Institutional and Legal Challenges to the Existing Microbial Research Infrastructure 23
 B. Towards a Redesigned Microbial Research Commons 27

PART ONE INTERNATIONAL REGULATION OF GENETIC RESOURCES AND THE ASSAULT ON SCIENTIFIC RESEARCH

2 Between Private and Public Goods: Emergence of the Transnational Research Commons for Plant and Microbial Genetic Resources 37
I. Historical Importance of Genetic Resources as Global Public Goods
 A. Dependence of Wet-Lab Microbiology on Cross-Border Exchanges of Validated Reference Strains from Public Culture Collections
 1. *Formation of an International Consortium of Public Service Microbial Culture Collections*
 2. *An Ancillary Research Commons for Influenza Viruses*
 B. Early Efforts to Form an Agricultural Research Commons for Plant Genetic Resources
 1. *Emergence of an International Consortium for the Preservation and Improvement of Cultivars Essential for Food Security*
 2. *Short-Lived Recognition of Plant Genetic Resources as the Common Heritage of Mankind*

II. Impinging Intellectual Property Rights Promoted by the Developed Countries
 A. *Sui Generis* Plant Breeders' Rights and Related Biotechnology Patents
 1. *Strengthened International Protection for Commercial Plant Breeders*
 2. *The Developing Countries Assert Countervailing Proprietary Rights of Their Own*
 B. Mandatory Protection of Some Microbial-Related Inventions Under the TRIPS Agreement of 1994
 1. *Increasing Reliance on Patents and Trade Secrecy Laws to Protect Commercial Applications of Microbial Genetic Resources*
 2. *Possible Patent Thickets*

III. Mounting Impediments to Research Uses of Genetic Resources
 A. The Revolt Against the WHO's First Pandemic Influenza Research Commons
 B. Implications for the Present Study

3. Tightening the Regulatory Grip: From the Convention on Biological Diversity in 1992 to the Nagoya Protocol in 2010
 I. Regulatory Measures Controlling Access to Genetic Resources Promoted by the Developing Countries
 A. Bioprospecting or Biopiracy?

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Historical Importance of Genetic Resources as Global Public Goods</td>
<td>37</td>
</tr>
<tr>
<td>A. Dependence of Wet-Lab Microbiology on Cross-Border Exchanges</td>
<td>38</td>
</tr>
<tr>
<td>Exchanges of Validated Reference Strains from Public Culture</td>
<td></td>
</tr>
<tr>
<td>Collections</td>
<td></td>
</tr>
<tr>
<td>1. *Formation of an International Consortium of Public Service</td>
<td>39</td>
</tr>
<tr>
<td>Microbial Culture Collections</td>
<td></td>
</tr>
<tr>
<td>2. An Ancillary Research Commons for Influenza Viruses</td>
<td>44</td>
</tr>
<tr>
<td>B. Early Efforts to Form an Agricultural Research Commons for Plant</td>
<td>46</td>
</tr>
<tr>
<td>Genetic Resources</td>
<td></td>
</tr>
<tr>
<td>1. *Emergence of an International Consortium for the Preservation and</td>
<td>47</td>
</tr>
<tr>
<td>Improvement of Cultivars Essential for Food Security*</td>
<td></td>
</tr>
<tr>
<td>2. *Short-Lived Recognition of Plant Genetic Resources as the Common</td>
<td>50</td>
</tr>
<tr>
<td>Heritage of Mankind*</td>
<td></td>
</tr>
<tr>
<td>II. Impinging Intellectual Property Rights Promoted by the Developed</td>
<td>52</td>
</tr>
<tr>
<td>Countries</td>
<td></td>
</tr>
<tr>
<td>A. Sui Generis Plant Breeders' Rights and Related Biotechnology</td>
<td>53</td>
</tr>
<tr>
<td>Patents</td>
<td></td>
</tr>
<tr>
<td>1. *Strengthened International Protection for Commercial Plant</td>
<td>53</td>
</tr>
<tr>
<td>Breeders</td>
<td></td>
</tr>
<tr>
<td>2. *The Developing Countries Assert Countervailing Proprietary Rights</td>
<td>57</td>
</tr>
<tr>
<td>of Their Own</td>
<td></td>
</tr>
<tr>
<td>B. Mandatory Protection of Some Microbial-Related Inventions Under the</td>
<td>60</td>
</tr>
<tr>
<td>TRIPS Agreement of 1994</td>
<td></td>
</tr>
<tr>
<td>1. *Increasing Reliance on Patents and Trade Secrecy Laws to Protect</td>
<td>65</td>
</tr>
<tr>
<td>Commercial Applications of Microbial Genetic Resources</td>
<td></td>
</tr>
<tr>
<td>2. Possible Patent Thickets</td>
<td>70</td>
</tr>
<tr>
<td>III. Mounting Impediments to Research Uses of Genetic Resources</td>
<td>72</td>
</tr>
<tr>
<td>A. The Revolt Against the WHO's First Pandemic Influenza Research</td>
<td>75</td>
</tr>
<tr>
<td>Commons</td>
<td></td>
</tr>
<tr>
<td>B. Implications for the Present Study</td>
<td>78</td>
</tr>
<tr>
<td>3. Tightening the Regulatory Grip: From the Convention on Biological</td>
<td>82</td>
</tr>
<tr>
<td>Diversity in 1992 to the Nagoya Protocol in 2010</td>
<td></td>
</tr>
<tr>
<td>I. Regulatory Measures Controlling Access to Genetic Resources Promoted</td>
<td>82</td>
</tr>
<tr>
<td>by the Developing Countries</td>
<td></td>
</tr>
<tr>
<td>A. Bioprospecting or Biopiracy?</td>
<td>84</td>
</tr>
</tbody>
</table>
B. Foundations of an International Regime of Misappropriation to Govern Genetic Resources
 1. Indigenous Communities (and Their State Sponsors) as Emerging Stakeholders 87
 2. Access and Benefit Sharing Under the Convention on Biological Diversity 91
C. Critical Evaluation of the CBD
 1. The CBD as an Incomplete International Regime of Misappropriation 97
 2. The Threat to Public Scientific Research on Plant and Microbial Genetic Resources 100
 a. Selected Cases of Alleged Biopiracy Involving Academic Researchers after 1992 100
 b. Major Weaknesses of the “Bilateral Approach” 106
II. Destabilizing the Exchange of Plant and Microbial Genetic Resources as Global Public Goods
A. The Public Microbial Culture Collections Consider Defensive Options 112
B. The CGIAR’s Agricultural Research Infrastructure on the Verge of Collapse 115
III. An International Treaty to Rescue and Expand “The Global Crop Commons”
A. Basic Concepts of the International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA) 119
B. Establishing the Multilateral System for Access and Benefit-Sharing
 1. The “Facilitated Access” Regime 121
C. Strengths and Weaknesses of the International Treaty on Plant Genetic Resources for Food and Agriculture
 1. Demonstrable Achievements 125
 2. Major Weaknesses 135
IV. New Constraints and Opportunities for Scientific Research Under the Nagoya Protocol
A. Clarifying the Broad Economic Scope of the CBD 142
B. Facilitating Scientific Research
 1. Recognizing the Link Between Public Science and Commercial Benefits 146
 2. Recognizing the Importance of Non-Monetary Benefits 150 153
PART TWO PRESERVING THE PUBLIC RESEARCH FUNCTIONS
OF MICROBIAL GENETIC RESOURCES AFTER THE NAGOYA PROTOCOL

4 The Existing Microbial Research Commons Confronts
Proprietary Obstacles

I. Evolution of Microbial Culture Collections as Basic Scientific Infrastructure
 A. The Pivotal Role of the World Federation for Culture Collections
 1. Aggregate Holdings and Capacity
 2. Servicing the Broad Microbiological Research Community
 3. The Perennial Problem of Funding
 B. From Culture Collections to Biological Resource Centers
 C. Beyond the WFCC: Regional and Global Networks of BRCs
 1. Disparities Among the WFCC Member Collections
 a. Legacy Collections in the European Union and the United States
 b. Wide Disparities Among Collections in Other Regions
 2. The Emerging BRC Networks

II. Contractual Restrictions on Access to and Use of Upstream Microbial Genetic Resources in Both Developed and Developing Countries
 A. The Advent of a Proprietary Model in Response to Government Neglect in the United States
 B. Diffusion of a More Proprietary Approach to Other Public Culture Collections

III. The Research Community Pushes Back
 A. Efforts to Negotiate More Research Friendly Material Transfer Agreements
 1. The Uniform Biological Material Transfer Agreement in the United States and Its Progeny
 2. The Core MTA of the European Union Culture Collections’ Organization
Contents

3. The European Commission’s Regulation on Access to and Use of Genetic Resources 219
 a. Underlying Premises 220
 b. Basic Concepts and Methods 221
B. Opting Out or Opting In? Limits of the Trusted Intermediary Approach 225
IV. From the Bilateral to the Multilateral Approach 231
 A. Basic Concepts of the WHO’s Pandemic Influenza Preparedness Framework Agreement (2011) 233
 B. Governance and Related Issues 238
 C. Lessons for a Redesigned Microbial Research Commons 241
 1. Trading Downstream Benefits from the Bilateral System for Essential Public Goods 243
 2. Opting into a Multilateral Approach in Order to Stimulate More Downstream Benefits from the Bilateral System 246

5. Facilitating Transnational Exchanges of Genetic Resources within a Redesigned Microbial Research Infrastructure 250
I. Reconciling Upstream Research Needs with Benefit-Sharing Under the Nagoya Protocol 250
 A. How the Existing Modalities of Exchange Fail the Needs of Scientific Research 250
 1. Social Costs of the Case-by-Case Transactional Approach 251
 2. The Flawed Premise of the Proprietary Ethos 253
 B. Formalizing the Informal Sector: Premises for a Multilateral Regime of Facilitated Access to Microbial Genetic Resources 257
II. Designing a Third Option: Ex Ante “Take and Pay” Rules for Stimulating Research and Applications 260
 A. Legal and Economic Foundations of a Compensatory Liability Regime 261
 B. Operational Logic of a Multilateral Common Pool Resource 265
 C. Key Components of the Proposed Multilateral Regime for Facilitated Exchanges of Microbial Genetic Resources 270
 1. Quality Standards as a Threshold Requirement 271
 2. Duty to Respect Reputational Benefits 274
 3. Tracking Mechanisms to Maintain the Chain of Custody 278
4. The Calculus of Royalties from Commercial Applications 284
5. An Enabling Governance Structure 289

III. Modeling a Sequence of Hypothetical Transactions 291
A. The Standard Deal in Six Scenarios 292
1. Identifying and Depositing the Microbe 292
2. Collections A and B Join the Proposed Microbial Research Commons 293
3. Microbe RURI 500/OCGI 8000 Elicits Research Interest 295
4. Development of a Commercial Product 297
5. Sales of the Product Trigger the Liability Rule and Distribution of Royalties 299
6. Lottery Effects and the Possibility of Leakage 302
 a. Multiple Industrial Users of the Same Microbe Produce Multiple Royalty Streams 303
 b. Addressing the Possibility of Leakage 304
B. Accommodating More Complicated Transactions 307
 1. Multiple Owners and Possible Royalty Stacking 307
 2. Derivatives or Modifications that Incorporate Materials Accessed from the Multilateral System 309
 3. Modifications Based on Data Pertaining to Microbial Materials Accessed from the Multilateral System 310
C. Advantages of the Scheme 312

PART THREE A DIGITALLY INTEGRATED INFRASTRUCTURE FOR MICROBIAL DATA AND INFORMATION

6. Legal and Institutional Obstacles Impeding Access to and Use of Scientific Literature and Data 319
I. Potentially Boundless Scientific Opportunities in the Digital Environment 319
II. Copyright and Related Laws as Digital Gridlock 324
 A. Two Conceptual Approaches in the Application of Copyright Law to Science 326
 1. Harmonizing the Designated Limitations and Exceptions that Weakly Defend Science in the European Union 328
 2. Limits of the Fair Use Approach in the United States 330
 B. Digital Locks and Contractual Overrides in the Online Environment 334
C. Exclusive Rights in Noncopyrightable Collections of Data 336

III. Automated Knowledge Discovery Tools as Instruments of Massive Infringements 342
 A. What Digital Science Would Really Need from Any Serious Legislative Reform 344
 1. A Tailor-Made Exception for Scientific Research 345
 2. Breaking the Digital Locks 346
 3. Disciplining Contractual Overrides 349
 4. Aligning Database Protection Laws with Tailor-Made Exceptions for Science in Copyright Law 351
 5. Adjusting the International Legal Framework to Accommodate the Needs of Science 352

IV. Institutional Constraints on Digital Knowledge Resources 357
 A. The Changing Role of Publishing Intermediaries 357
 B. Impediments to the Pooling of Data and Digitally Networked Collaboration 362

V. Final Observations 367
 A. Bridging the Disconnect Between Private Rights and Public Science 368
 B. Reconciling the Goals of Innovation Policy with the Needs of Science Policy 370
 C. Towards a Digitally Integrated Infrastructure for Microbial Literature and Data 371

7 Enabling the Microbiological Research Community to Control Its Own Scholarly Publications 373
 I. Response of the Scientific Community to Restrictions on Published Research Results 373
 II. Surveying the Practices of the Microbiological Journals 375
 A. Contractual Provisions of Selected Leading Journals 378
 B. Results of Broader Survey 380
 1. A Growing Number of Open Access Microbiology Journals 382
 2. Self-Archiving by Authors Who Publish in Subscription Journals 388
 3. Disposition of Copyrights 389
 4. Costs of the Open-Access Option 390
 5. Postscript 391
III. Redefining the Role of Publishing Intermediaries under Current Institutional Constraints
 A. Reflections on the Law Journal Model 396
 B. Funders’ Ability to Contractually Regulate Access to, Use, and Reuse of Scientific Literature 399
 C. Integrating Intermediaries’ Functions into Transnational Digital Knowledge Environments 402

8 Fully Exploiting Data-Intensive Research Opportunities in the Networked Environment 406
 I. Early Release Policies to Manage the Deluge of Genomic Reference Data 406
 A. The Bermuda, Fort Lauderdale, and Toronto Data Policy Guidelines 409
 B. Evaluating the Mandatory Early Release Policies and Their Conceptual Framework 412
 1. Selected Examples of Compliance in the Field of Microbiology 414
 2. The International Human Microbiome Consortium 415
 3. Evaluating the Trend 419
 II. Beyond Early Release: Diverse Networked Sharing Strategies to Manage and Exploit the Deluge of Data 421
 A. Selected Taxonomic and Related Microbiological Reference Data Collections 422
 B. Online Aggregators of Data and Information about Microbial Materials Available from Public Culture Collections 425
 1. The World Data Center for Microorganisms 426
 2. The StrainInfo Bioportal 429
 C. Understanding the Data Sharing Movement and Its Future Potential 431
 1. Benefits and Drawbacks of the Data Sharing Ethos 433
 a. The Public Goods Approach 434
 (1) Benefits 435
 (2) Disadvantages 436
 b. The Quasi-Private Goods Approach 437
 2. Beyond the Public Versus Private Distinction 440
 III. Building Transnational Open Knowledge Environments 441
 A. Examples of Incipient Open Knowledge Environments on the Frontiers of Microbiology 441
PART FOUR GOVERNING PUBLIC KNOWLEDGE ASSETS WITHIN A REDESIGNED MICROBIAL RESEARCH COMMONS

9 Institutional Models for a Transnational Research Commons 473
 I. Theoretical Reflections on Designing a Knowledge Commons 476
 A. Applying Commons Theory to the Microbial Research Infrastructure 480
 1. Distinctive Characteristics of Genetic Materials as a Common-Pool Resource 484
 2. Factoring in the Unprecedented Power of Digital Networks 486
 3. Potential Payoffs from a Well-Designed Governance Model 489
 B. Three Governance Prototypes for Globally Pooled Research Assets 492
 II. Selected Empirically Relevant Governance Approaches 494
 A. The Global Crop Commons: A Treaty-Based Intergovernmental Entity 496
 1. A Two-Headed Governance Construct 496
 2. Implementation of the Multilateral Regime 499
 a. The Viral License 499
 b. The Digital Component 501
Contents

c. Long-Term Funding Arrangements 502

d. Compliance and Dispute Settlement 504

B. Hybrid Pooling Arrangements Among Governments, Para-Statal Entities, and Nongovernmental Stakeholders 504

1. The World Federation for Culture Collections (WFCC) 505
 a. Objectives and Membership 505
 b. Governance 507
 c. Funding 508
 d. Future Prospects: The WFCC at a Turning Point 509

2. The Global Biodiversity Information Facility (GBIF) 510
 a. Objectives and Membership 510
 b. Governance 511
 c. Funding 512
 d. Intellectual Property Policies 513
 e. Future Prospects 514

3. The Group on Earth Observations (GEO) 514
 a. Objectives and Membership 514
 b. Governance 516
 c. Funding 517
 d. Intellectual Property Policies 517
 e. Future Prospects 518

4. The International Human Microbiome Consortium (IHMC) 519
 a. Objectives and Membership 519
 b. Governance 521
 c. Funding 522
 d. Data and Intellectual Property Policies 523
 e. Future Prospects 525

C. The Market-Like Nongovernmental Enterprise 526

1. The Global Biological Resource Centers Network (GBRCN) Demonstration Project 528
 a. Objectives and Membership 528
 b. Proposed Governance Structure 532
 c. Funding and the Business Model 533

2. A Questionable Blueprint for the Future 538

3. The Next Step: The Microbial Resource Infrastructure (MIRRI) as a European Stepping Stone to the GBRCN 541

III. In Search of a Politically Acceptable and Scientifically Productive Operational Framework 544

A. Evaluating the Existing Legal and Institutional Landscape 544

1. Comparing Science-Managed NGOs with a Treaty-Based IGO 545
2. Advantages of a Hybrid International Framework Agreement
 B. Reconciling National Sovereignty over Microbial Genetic Resources with a Global Public Goods Approach
 1. Avoiding the Wrong Incentives
 2. Facilitated Access to Upstream Research Assets and Benefit-Sharing Under a Multilateral System
 C. Toward a More Science-Driven Organizational Model for the Digital Age
 1. Avoiding an Unduly Narrow Scientific Mission
 2. Giving Scientists a Voice in the Decision-Making Process

10 Governing Digitally Integrated Genetic Resources, Data, and Literature
 I. Premises for Constructing a Common Pool Resource
 A. The Political Economy of a Global Approach
 B. The Critical Role of Effective Leadership
 C. The Need for Political Cover
 II. Organizational and Structural Considerations
 A. Membership and Decision Making
 B. Ancillary Membership Issues
 C. Observer Status
 D. The Core Institutional Components
 1. A Governing Body and an Executive Committee
 2. A Scientific Coordination Council (SCC) and a Small Secretariat
 3. Advisory Committees
 III. Implementing the Multilateral Regime for Facilitated Access to Ex Situ Microbial Genetic Resources
 A. Promoting and Certifying Quality Standards
 B. Defining the Conditions of Legitimate Exchange
 C. Drafting an SMTA to Establish the Compensatory Liability Regime: The Critical Issues
 1. The Question of a Users' Surcharge
 2. Quantum and Duration of Royalties
 3. Protocols for the Distribution of Royalties
 4. New Uses of Pre-1992 Microbial Materials
 5. Genetic Sequences and Other Related Data
 6. Prescribing Minimum Conditions of Reciprocity
7. Mediation and Dispute Resolution 618
8. Recognizing the Importance of Nonmonetary Benefits 622
D. Digitally Integrating Knowledge Assets Available from the Multilateral System 624
1. The Core Project 624
2. Optional Longer Term Projects 628
E. Relations with Developing Countries 628
F. Other Issues for the Governing Body to Consider 632
1. Devising Policies for Earlier Release of Materials Used in Basic Research 632
2. Possible Negotiations Concerning Access to In Situ Microbial Genetic Resources 634
3. Biosafety and Security Considerations 635
IV. Funding and Institutional Stability 637
A. The Need for Adequate and Dependable Funding 637
B. Hidden Costs of Not Funding a Redesigned Microbial Research Commons 642
V. Concluding Observations 645

Index 651