Welfare and the household

Oxford Handbook on Well-Being and Public Policy Workshop

Pierre-André Chiappori

Columbia University

Princeton, February 2014

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals
- But in practice, welfare analysis stops at the household level

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals
- But in practice, welfare analysis stops at the household level
- Question: what can we say about individual welfare within the household? Can we 'open the black box'?

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals
- But in practice, welfare analysis stops at the household level
- Question: what can we say about individual welfare within the household? Can we 'open the black box'?
- Raises specific issues:

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals
- But in practice, welfare analysis stops at the household level
- Question: what can we say about individual welfare within the household? Can we 'open the black box'?
- Raises specific issues:
- conceptual

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals
- But in practice, welfare analysis stops at the household level
- Question: what can we say about individual welfare within the household? Can we 'open the black box'?
- Raises specific issues:
- conceptual
- normative

Introduction

Welfare economics and the household: a paradox

- Conceptually, welfare defined at the individual level
- Individual welfare well defined
- Defining 'household welfare' is less obvious ...
- ... but can only be done in reference to the welfare of individuals
- But in practice, welfare analysis stops at the household level
- Question: what can we say about individual welfare within the household? Can we 'open the black box'?
- Raises specific issues:
- conceptual
- normative
- empirical

Intrahousehold welfare: issues and problems

- Conceptual issues

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations
- But: how can they be extended to multi-person households?

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations
- But: how can they be extended to multi-person households?
- Empirical issues:

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations
- But: how can they be extended to multi-person households?
- Empirical issues:
- Preferences not directly observable

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations
- But: how can they be extended to multi-person households?
- Empirical issues:
- Preferences not directly observable
- Decision process not directly observable

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations
- But: how can they be extended to multi-person households?
- Empirical issues:
- Preferences not directly observable
- Decision process not directly observable
- Intra household allocation not (fully) directly observable
... but many recent progresses

Intrahousehold welfare: issues and problems

- Conceptual issues
- Preferences: externalities
- Preferences: altruism
- Public goods (different impact on different individuals)
- Household production, domestic labor, chores
- Normative issues
- Standard notions: equivalent variations, compensating variations
- But: how can they be extended to multi-person households?
- Empirical issues:
- Preferences not directly observable
- Decision process not directly observable
- Intra household allocation not (fully) directly observable
... but many recent progresses
- In all cases:

Need a well defined, conceptual framework

Basic framework: the collective model

- Need a non unitary framework

Basic framework: the collective model

- Need a non unitary framework
- Need a general characterization of testability and identification

Basic framework: the collective model

- Need a non unitary framework
- Need a general characterization of testability and identification
- Encompasses: unitary, bargaining, 'equilibrium', separate spheres, etc.

Basic framework: the collective model

- Need a non unitary framework
- Need a general characterization of testability and identification
- Encompasses: unitary, bargaining, 'equilibrium', separate spheres, etc.
- Large body of (theoretical and empirical) work on characterization and identification

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(3) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(3) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

Conceptual Framework

1. Commodities:

- K-person household; N public goods $Q=\left(Q_{1}, \ldots, Q_{N}\right) ; n$ private goods
- Member a $(a=1, \ldots, K)$ consumes $\left(Q, q_{i}^{a}\right)$ with $\sum_{a} q_{i}^{a}=q_{i}$.
- An allocation is a $N+K n$-vector $\left(Q, q^{1}, \ldots, q^{K}\right)$; market prices: N-vector P, n-vector p

2. Preferences:

- In general:

$$
U^{a}\left(Q, q^{1}, \ldots, q^{K}\right)
$$

\rightarrow allows for externalities, etc.

- Problem: identification!!! \rightarrow more specific forms:
- egoistic $U^{a}\left(Q, q^{a}\right)$
- ... but could be caring $W^{a}\left(U^{1}\left(Q, q^{1}\right), \ldots, U^{K}\left(Q, q^{K}\right)\right)$
- ... although the welfare interpretation may be tricky
- Ordinally defined; may depend on marital status

Conceptual Framework

3. Decision process: efficiency
$\rightarrow \exists \mu=\left(\mu^{1}, \ldots, \mu^{K}\right)$ with $\sum_{a} \mu^{a}=1$ such that household solves

$$
\max _{\left(Q, q^{1}, \ldots, q^{K}\right)} \sum_{a} \mu^{a} u^{a}\left(Q, q^{a}\right)
$$

Therefore:

- Notion of 'power', fully summarized by the Pareto weights
- Can be seen as a 'reduced form' of a more structural background (Nash bargaining; matching; ...)
- Caring versus egoism: any allocation that is efficient with caring utilities is efficient with egoistic utilities
- characterization: can assume egoistic preferences
- identification: hard to distinguish altruism and power; if $W^{a}=\sum_{s} \delta_{s}^{a} u^{s}$ then

$$
\sum_{a} \mu^{a} W^{a}=\sum_{a, s} \mu^{a} \delta_{s}^{a} u^{s}=\sum_{s}\left(\sum_{a} \mu^{a} \delta_{s}^{a}\right) u^{s}
$$

Two basic notions

1. Collective indirect utility of a : the utility reached by a at the end of the decision process
Formally, if $\left(\bar{Q}(p, P, y), \bar{q}^{1}(p, P, y), \ldots, \bar{q}^{K}(p, P, y)\right)$ chosen bundle,

$$
V^{a}(p, P, y, z)=u^{a}\left(\bar{Q}(p, P, y, z), \bar{q}^{a}(p, P, y, z)\right)
$$

Note that:

- Depends on preferences and decision process
- Fully summarizes individual welfare
- But ordinal (as usual) \rightarrow can one define a money-metric measure of individual welfare?
- Answer:
- Yes (MMWI, Chiappori-Meghir 2014) ...
- ... but raises identification problems

Two basic notions

2. Distribution factors

Definition: any variable that (i) does not affect preferences or the budget constraint, but (ii) may influence the decision process, therefore the Pareto weights.
Example:

- Threat points in a bargaining model
- Individual incomes: if $\left(y^{1}, \ldots, y^{K}\right)$ is the vector of individual incomes and $y=\sum_{a} y^{a}$,
- total income y is not a distribution factor (it enters the budget constraints)
- but the $(K-1)$ ratios $y^{1} / K, \ldots, y^{K-1} / K$ are.

Plays a crucial role:

- For identification
- For the normative issues

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(3) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

Particular case: all goods are private

Assume all commodities are privately consumed. Then:

Proposition

Assume an allocation $\left(\bar{q}^{1}, \ldots, \bar{q}^{K}\right)$ is Pareto efficient. Then there exists K non-negative functions $\left(\rho^{1}, \ldots, \rho^{K}\right)$ of prices, total income and distribution factors, with $\sum_{k} \rho^{k}(p, y, z)=y$, such that agent a solves

$$
\begin{equation*}
\max _{q^{a}} u^{a}\left(q^{a}\right) \text { under } \sum_{i=1}^{n} p_{i} q_{i}^{a}=\rho^{a} \tag{D}
\end{equation*}
$$

Conversely, for any non-negative functions $\left(\rho^{1}, \ldots, \rho^{K}\right)$ such that $\sum_{k} \rho_{k}(p, y, z)=y$, an allocation that solves (D) for all a is Pareto-efficient.

Interpretation: two-stage process

Basic insight:

For given prices, individual welfare fully summarized by the sharing rule

Public goods: Lindahl prices and generalized sharing rule

Proposition

Assume an allocation $\left(\bar{Q}, \bar{q}^{1}, \ldots, \bar{q}^{K}\right)$ is Pareto efficient. Then there exists
K non-negative functions $\left(\rho^{* 1}, \ldots, \rho^{* K}\right)$ (the GSR) and $K \times N$ non-negative functions $\left(P^{1}, \ldots, P^{K}\right)$ of prices, total income and distribution factors, with $\sum_{a} \rho^{* a}=y$ and $\sum_{a} P_{j}^{a}=P_{j}$, such that agent a solves

$$
\begin{equation*}
\max _{Q, q^{a}} u^{a}\left(Q, q^{a}\right) \text { under } \sum_{i=1}^{n} p_{i} q_{i}^{a}+\sum_{j=1}^{n} P_{j}^{a} Q_{j}=\rho^{* a} \tag{D}
\end{equation*}
$$

Interpretation: decentralization via personal prices (MWP) But: no one-to-one relationship between welfare and GSR Why? \rightarrow neglects price of public consumption

Public goods: Money Metric Welfare Index

Definition

The Money Metric Welfare Index (MMWI) of agent $a, m^{a}(p, P, y, z)$, is defined by:

$$
\begin{aligned}
v^{a}\left(p, P, m^{a}(p, P, y, z)\right) & =v^{a}\left(p, P^{a}, \rho^{* a}(p, P, y, z)\right) \\
& =V^{a}(p, P, y, z)
\end{aligned}
$$

Equivalently, if c^{a} denotes the expenditure function of agent a, then:

$$
m^{a}(p, P, y, z)=c^{a}\left(p, P, V^{a}(p, P, y, z)\right)
$$

In words, m^{a} is the monetary amount that agent a would need to reach the utility level $V^{a}(p, P, y)$, if she was to pay the full price of each public good (i.e., if she faced the price vector P instead of the personalized prices P^{a}).

Public goods: Money Metric Welfare Index (cont.)

- Unlike the GSR, the Money Metric Welfare Index fully characterizes the utility level reached by the agent.
- If preferences identical whether single or married, then m^{a} is the income a would need, if single, to reach the same utility level
- But this interpretation is not crucial.
- Case of private goods only: MMWI coincides with the sharing rule

A C-D example

- CD utilities

$$
\begin{aligned}
u^{a} & =\frac{1}{1+\alpha} \log q^{a}+\frac{\alpha}{1+\alpha} \log Q \\
u^{b} & =\frac{1}{1+\beta} \log q^{b}+\frac{\beta}{1+\beta} \log Q
\end{aligned}
$$

- Indirect utilities

$$
\begin{aligned}
v^{a} & =\log y-\frac{\alpha}{1+\alpha} \log P-\log (1+\alpha)+\frac{\alpha}{1+\alpha} \log \alpha \\
v^{b} & =\log y-\frac{\beta}{1+\beta} \log P-\log (1+\beta)+\frac{\beta}{1+\beta} \log \beta
\end{aligned}
$$

- Let μ be b's Pareto weight; then the couple's consumption is given by:

$$
\begin{aligned}
q^{a} & =\frac{1}{(1+\alpha)(1+\mu)} y, q^{b}=\frac{\mu}{(1+\beta)(1+\mu)} y \\
\text { and } Q & =\frac{\alpha(1+\beta)+\mu \beta(1+\alpha)}{(1+\alpha)(1+\beta)(1+\mu)} \frac{y}{P}
\end{aligned}
$$

A C-D example (cont.)

(1) Conditional sharing rule:

$$
\tilde{\rho}^{a}=\frac{1}{(1+\alpha)(1+\mu)} y, \tilde{\rho}^{b}=\frac{1}{(1+\beta)(1+\mu)} y
$$

(2) Lindahl prices are

$$
P^{a}=\frac{\alpha(1+\beta)}{\alpha(1+\beta)+\mu \beta(1+\alpha)} P, P^{b}=\frac{\mu \beta(1+\alpha)}{\alpha(1+\beta)+\mu \beta(1+\alpha)} P
$$

and the generalized sharing rule is

$$
\rho^{* a}=\frac{y}{1+\mu}, \rho^{* b}=\frac{\mu y}{1+\mu}
$$

(3) The two MMWIs are given by:

$$
\begin{aligned}
& m^{a}=\left(\frac{\alpha(1+\beta)+\mu \beta(1+\alpha)}{\alpha(1+\beta)}\right)^{\frac{\alpha}{1+\alpha}} \frac{y}{1+\mu} \\
& m^{b}=\left(\frac{\alpha(1+\beta)+\mu \beta(1+\alpha)}{\mu \beta(1+\alpha)}\right)^{\frac{\beta}{1+\beta}} \frac{\mu y}{1+\mu}
\end{aligned}
$$

A C-D example (cont.)

Assume, now, that $\mu=1$ but $\alpha=2$ while $\beta=.5$, so that $q^{a}=y / 6, q^{b}=y / 3, P Q=y / 2$.
Individual welfare?
(1) GSR:

$$
\rho^{* a}=\frac{y}{2}=\rho^{* b}
$$

But a 'pays' twice as much for the public good ($P^{a}=\frac{2}{3} P$ while $P^{b}=\frac{1}{3} P$).

A C-D example (cont.)

Assume, now, that $\mu=1$ but $\alpha=2$ while $\beta=.5$, so that $q^{a}=y / 6, q^{b}=y / 3, P Q=y / 2$.
Individual welfare?
(1) GSR:

$$
\rho^{* a}=\frac{y}{2}=\rho^{* b}
$$

But a 'pays' twice as much for the public good ($P^{a}=\frac{2}{3} P$ while $P^{b}=\frac{1}{3} P$).
(2) MMWIs:

$$
m^{a}=.655 y, m^{b}=.72 y
$$

Note that:

$$
m^{a}+m^{b}=1.375 y
$$

reflecting the gains stemming from public consumption

Household technology (BCL 2010)

(1) Utilities identical when single or married
(2) But: marriage (or cohabitation) gives access to a more productive technology
(3) Implementation:

- Utilities $U^{a}\left(c^{a}, C\right)$ for $a=1, \ldots, K$, same as singles
- Consumption (c, C), produced from market purchases q (plus time):

$$
(c, C)=f(q)
$$

- In practice, private goods and linear or even Barten scales:

$$
c=A . q \text { or } c_{i}=\sum_{a} c_{i}^{a}=\eta_{i} q_{i}, i=1, \ldots, n
$$

where η_{j} degree of jointness of good j. Affects income and prices

- In addition, sharing rule
- U^{a} recovered from singles, A and the SR from couples

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(3) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

'Pure' identification

Basic result (CE 2009):

Generically, under one exclusion restriction per agent, collective indirect utilities are (ordinally) identified from demand functions.
\rightarrow Can identify the welfare-relevant concept
In practice:

- Public goods only: straightforward identification, since

$$
\begin{aligned}
V^{a}(P, y) & =U^{a}\left(Q_{1}, Q_{3}, \ldots Q_{N}\right) \\
V^{b}(P, y) & =U^{b}\left(Q_{2}, Q_{3}, \ldots Q_{N}\right)
\end{aligned}
$$

\rightarrow therefore

'Pure' identification

Basic result (CE 2009):

Generically, under one exclusion restriction per agent, collective indirect utilities are (ordinally) identified from demand functions.
\rightarrow Can identify the welfare-relevant concept
In practice:

- Public goods only: straightforward identification, since

$$
\begin{aligned}
V^{a}(P, y) & =U^{a}\left(Q_{1}, Q_{3}, \ldots Q_{N}\right) \\
V^{b}(P, y) & =U^{b}\left(Q_{2}, Q_{3}, \ldots Q_{N}\right)
\end{aligned}
$$

\rightarrow therefore

- utilities ordinally identified

'Pure' identification

Basic result (CE 2009):

Generically, under one exclusion restriction per agent, collective indirect utilities are (ordinally) identified from demand functions.
\rightarrow Can identify the welfare-relevant concept
In practice:

- Public goods only: straightforward identification, since

$$
\begin{aligned}
V^{a}(P, y) & =U^{a}\left(Q_{1}, Q_{3}, \ldots Q_{N}\right) \\
V^{b}(P, y) & =U^{b}\left(Q_{2}, Q_{3}, \ldots Q_{N}\right)
\end{aligned}
$$

\rightarrow therefore

- utilities ordinally identified
- Lindahl prices exactly identified

'Pure' identification

Basic result (CE 2009):

Generically, under one exclusion restriction per agent, collective indirect utilities are (ordinally) identified from demand functions.
\rightarrow Can identify the welfare-relevant concept
In practice:

- Public goods only: straightforward identification, since

$$
\begin{aligned}
V^{a}(P, y) & =U^{a}\left(Q_{1}, Q_{3}, \ldots Q_{N}\right) \\
V^{b}(P, y) & =U^{b}\left(Q_{2}, Q_{3}, \ldots Q_{N}\right)
\end{aligned}
$$

\rightarrow therefore

- utilities ordinally identified
- Lindahl prices exactly identified
- MMWIs exactly identified

'Pure' identification

Basic result (CE 2009):

Generically, under one exclusion restriction per agent, collective indirect utilities are (ordinally) identified from demand functions.
\rightarrow Can identify the welfare-relevant concept
In practice:

- Public goods only: straightforward identification, since

$$
\begin{aligned}
V^{a}(P, y) & =U^{a}\left(Q_{1}, Q_{3}, \ldots Q_{N}\right) \\
V^{b}(P, y) & =U^{b}\left(Q_{2}, Q_{3}, \ldots Q_{N}\right)
\end{aligned}
$$

\rightarrow therefore

- utilities ordinally identified
- Lindahl prices exactly identified
- MMWIs exactly identified
- Does not work for the 'unitary' model $W\left(u^{1}, \ldots, u^{K}\right)$!!

Private goods: local identification

- Basic result:

Private goods: local identification

- Basic result:
- Individual welfare (collective indirect utilities) identified ...

Private goods: local identification

- Basic result:
- Individual welfare (collective indirect utilities) identified
- ... although direct utilities and sharing rules identified 'up to an additive constant (or function)'

Private goods: local identification

- Basic result:
- Individual welfare (collective indirect utilities) identified ...
- ... although direct utilities and sharing rules identified 'up to an additive constant (or function)'
- 3 commodities, 1 and 2 exclusive, 3 non assignable (C 88, 92); observe $q_{i}\left(p_{1}, p_{2}, y\right)$; goal: recover

$$
u^{a}\left(q_{1}, q_{3}^{a}\right), u^{b}\left(q_{2}, q_{3}^{b}\right), \rho\left(p_{1}, p_{2}, y\right)
$$

Private goods: local identification

- Basic result:

- Individual welfare (collective indirect utilities) identified ...
- ... although direct utilities and sharing rules identified 'up to an additive constant (or function)'
- 3 commodities, 1 and 2 exclusive, 3 non assignable (C 88, 92); observe $q_{i}\left(p_{1}, p_{2}, y\right)$; goal: recover

$$
u^{a}\left(q_{1}, q_{3}^{a}\right), u^{b}\left(q_{2}, q_{3}^{b}\right), \rho\left(p_{1}, p_{2}, y\right)
$$

- Assume $\bar{u}^{a}, \bar{u}^{b}, \bar{\rho}$ is a solution; define $u_{K}^{a}, u_{K}^{b}, \rho_{K}$ by:

$$
\begin{aligned}
\rho_{K}\left(p_{1}, p_{2}, y\right) & =\bar{\rho}\left(p_{1}, p_{2}, y\right)+K \text { and } \\
u_{K}^{a}\left(q_{1}^{a}, q_{3}^{a}\right) & =\bar{u}^{a}\left(q_{1}^{a}, q_{3}^{a}-K\right), u_{K}^{b}\left(q_{2}^{b}, q_{3}^{b}\right)=\bar{u}^{b}\left(q_{2}^{b}, q_{3}^{b}+K\right)
\end{aligned}
$$

Then:

Private goods: local identification

- Basic result:
- Individual welfare (collective indirect utilities) identified ...
- ... although direct utilities and sharing rules identified 'up to an additive constant (or function)'
- 3 commodities, 1 and 2 exclusive, 3 non assignable (C 88, 92); observe $q_{i}\left(p_{1}, p_{2}, y\right)$; goal: recover
$u^{a}\left(q_{1}, q_{3}^{a}\right), u^{b}\left(q_{2}, q_{3}^{b}\right), \rho\left(p_{1}, p_{2}, y\right)$
- Assume $\bar{u}^{a}, \bar{u}^{b}, \bar{\rho}$ is a solution; define $u_{K}^{a}, u_{K}^{b}, \rho_{K}$ by:

$$
\begin{aligned}
\rho_{K}\left(p_{1}, p_{2}, y\right) & =\bar{\rho}\left(p_{1}, p_{2}, y\right)+K \text { and } \\
u_{K}^{a}\left(q_{1}^{a}, q_{3}^{a}\right) & =\bar{u}^{a}\left(q_{1}^{a}, q_{3}^{a}-K\right), u_{K}^{b}\left(q_{2}^{b}, q_{3}^{b}\right)=\bar{u}^{b}\left(q_{2}^{b}, q_{3}^{b}+K\right)
\end{aligned}
$$

Then:

- Same demand for $q^{1}, q^{2}, q^{3}\left(\right.$ since $\left.q_{3}^{a}=\bar{q}^{a}+K, q_{3}^{b}=\bar{q}^{b}-K\right) \rightarrow$ empirically undistinguishable

Private goods: local identification

- Basic result:
- Individual welfare (collective indirect utilities) identified ...
- ... although direct utilities and sharing rules identified 'up to an additive constant (or function)'
- 3 commodities, 1 and 2 exclusive, 3 non assignable (C 88, 92); observe $q_{i}\left(p_{1}, p_{2}, y\right)$; goal: recover
$u^{a}\left(q_{1}, q_{3}^{a}\right), u^{b}\left(q_{2}, q_{3}^{b}\right), \rho\left(p_{1}, p_{2}, y\right)$
- Assume $\bar{u}^{a}, \bar{u}^{b}, \bar{\rho}$ is a solution; define $u_{K}^{a}, u_{K}^{b}, \rho_{K}$ by:

$$
\begin{aligned}
\rho_{K}\left(p_{1}, p_{2}, y\right) & =\bar{\rho}\left(p_{1}, p_{2}, y\right)+K \text { and } \\
u_{K}^{a}\left(q_{1}^{a}, q_{3}^{a}\right) & =\bar{u}^{a}\left(q_{1}^{a}, q_{3}^{a}-K\right), u_{K}^{b}\left(q_{2}^{b}, q_{3}^{b}\right)=\bar{u}^{b}\left(q_{2}^{b}, q_{3}^{b}+K\right)
\end{aligned}
$$

Then:

- Same demand for $q^{1}, q^{2}, q^{3}\left(\right.$ since $\left.q_{3}^{a}=\bar{q}^{a}+K, q_{3}^{b}=\bar{q}^{b}-K\right) \rightarrow$ empirically undistinguishable
- Different utility functions but same utility 'levels': the constant is welfare irrelevant

Private goods: local identification

- 3 commodities, 1 and 2 exclusive, 3 non assignable (C 88, 92): Sharing rule identified up to a welfare irrelevant additive constant

q_{3}

q_{1}

Private goods: local identification

- 3 commodities, 1 and 2 exclusive, 3 non assignable (C 88, 92): Sharing rule identified up to a welfare irrelevant additive constant

$$
q_{3}
$$

q_{1}

- In general:

SR identified up to a welfare irrelevant additive function of non assignable prices

General case: local identification

- Same result:

> The CSR, the GSR and the MMWI
> are identified up to an additive function of the prices of non exclusive private goods

General case: local identification

- Same result:

> The CSR, the GSR and the MMWI
> are identified up to an additive function of the prices of non exclusive private goods

- Raises an interesting, conceptual issue, since the additive function:

General case: local identification

- Same result:

The CSR, the GSR and the MMWI
are identified up to an additive function of the prices of non exclusive private goods

- Raises an interesting, conceptual issue, since the additive function:
- is welfare-irrelevant ...

General case: local identification

- Same result:

The CSR, the GSR and the MMWI
are identified up to an additive function of the prices of non exclusive private goods

- Raises an interesting, conceptual issue, since the additive function:
- is welfare-irrelevant ...
- ... although would be crucial for other aspects (e.g. inequality)

General case: local identification

- Same result:

The CSR, the GSR and the MMWI
are identified up to an additive function of the prices of non exclusive private goods

- Raises an interesting, conceptual issue, since the additive function:
- is welfare-irrelevant ...
- ... although would be crucial for other aspects (e.g. inequality)
- Note that while the Collective indirect utility is exactly (ordinally) identified, its money-metric equivalent (the MMWI) is not

General case: local identification

- Same result:

The CSR, the GSR and the MMWI
are identified up to an additive function of the prices of non exclusive private goods

- Raises an interesting, conceptual issue, since the additive function:
- is welfare-irrelevant ...
- ... although would be crucial for other aspects (e.g. inequality)
- Note that while the Collective indirect utility is exactly (ordinally) identified, its money-metric equivalent (the MMWI) is not
- But: this is specific to local identification

Private goods: global conditions

- In addition, global restrictions (non negativeness)

Private goods: global conditions

- In addition, global restrictions (non negativeness)
- May pin down the sharing rule

Private goods: global conditions

- In addition, global restrictions (non negativeness)
- May pin down the sharing rule
- Example:

$$
\rho(p, y)=\bar{\rho}(p, y)+\phi\left(p_{3}, \ldots, p_{n}\right)
$$

Adding the restrictions that

$$
\rho(p, 0)=0 \quad \forall p
$$

pins down ϕ :

$$
\phi\left(p_{3}, \ldots, p_{n}\right)=-\bar{\rho}(p, 0)
$$

and additional, overidentifying restrictions (e.g., $\left.\partial \bar{\rho}(p, 0) / \partial p_{i}=0\right)$.

Private goods: global conditions

- In addition, global restrictions (non negativeness)
- May pin down the sharing rule
- Example:

$$
\rho(p, y)=\bar{\rho}(p, y)+\phi\left(p_{3}, \ldots, p_{n}\right)
$$

Adding the restrictions that

$$
\rho(p, 0)=0 \quad \forall p
$$

pins down ϕ :

$$
\phi\left(p_{3}, \ldots, p_{n}\right)=-\bar{\rho}(p, 0)
$$

and additional, overidentifying restrictions (e.g., $\left.\partial \bar{\rho}(p, 0) / \partial p_{i}=0\right)$.

- Related to 'revealed preference' approaches (Cherchye et al 2012).

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(3) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)
- Technology non parametrically identified

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)
- Technology non parametrically identified
- But: assumes identical preferences; requires price variations; requires observation of singles; demanding estimation process

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)
- Technology non parametrically identified
- But: assumes identical preferences; requires price variations; requires observation of singles; demanding estimation process
- Relaxed version (Dunbar Lewbel Pendakur 2011)

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)
- Technology non parametrically identified
- But: assumes identical preferences; requires price variations; requires observation of singles; demanding estimation process
- Relaxed version (Dunbar Lewbel Pendakur 2011)
- assume independence of scale

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)
- Technology non parametrically identified
- But: assumes identical preferences; requires price variations; requires observation of singles; demanding estimation process
- Relaxed version (Dunbar Lewbel Pendakur 2011)
- assume independence of scale
- preferences for adult goods independent of number of children

Using observations of singles

Basic trade-offs

- If utilities identical for singles and married, then much stronger identification results
- Two issues:
- Selection into marriage \rightarrow explicitly model matching
- Changes in preferences (especially with public goods)
- Solution 1: 'part of' the utility remains unaffected
- Bargain et al. (2006), Myck et al. (2006), Beninger et al. (2006)
- Lise and Seitz 1.1
- Solution 2: Household technology (BCL 2010)
- Technology non parametrically identified
- But: assumes identical preferences; requires price variations; requires observation of singles; demanding estimation process
- Relaxed version (Dunbar Lewbel Pendakur 2011)
- assume independence of scale
- preferences for adult goods independent of number of children
- identified from cross sections

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(2) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

Empirical results 1: Lise and Seitz 2009

Empirical results 2：Dunbar Lewbel Pendakur 2010

Table 4：Estimated Resource Shares and Poverty Rates

		Mean	Std Dev	Min	Max	Pov Rate Unequal	Pov Rate Equal	
one child	man	0.463	0.087	0.245	0.762	0.686	0.850	
	woman	0.402	0.071	0.168	0.587	0.766		
	children	0.135	0.047	0.008	0.260	0.954		
	each child	0.135	0.047	0.008	0.260			
two children	man	0.516	0.078	0.282	0.786	0.547	0.916	
	woman	0.273	0.063	0.075	0.475	0.885		
	children	0.211	0.044	0.059	0.326	0.970		
	each child	0.105	0.022	0.029	0.163			
three children	man	0.521	0.081	0.219	0.795	0.522	0.948	
	woman	0.244	0.065	0.002	0.512	0.889		
	children	0.236	0.042	0.112	0.374	0.996		
	each child	0.079	0.014	0.037	0.125			
four children	man	0.441	0.080	0.170	0.701	0.538	0.972	
	woman	0.267	0.066	0.043	0.532	0.838		
	children	0.293	0.037	0.178	0.402	0.989		
	each child	0.073	0.009	0.044	0.101			
All Households	man	0.489	0.088	0.170	0.795	0.582	0.913	
	woman	0.304	0.093	0.002	0.587	0.842		
	children	0.207	0.070	0.008	0.402	0.974		
	each child	0.103	0.038	0.008	0.260			
All Persons	all	0.235	0.177	0.008	0.795	0.855	0.924 三	๑のく
（Columbia University）		Welfare	and the ho	usehold		Princeton	February 2014	$30 / 35$

Roadmap

(1) Conceptual framework
(1) Modeling household decision
(2) Measures of household welfare
(2) Identification: results and applications
(1) 'Pure' identification in the collective model
(2) Singles and couples
(3) Some empirical results
(3) Normative issues

Normative issues

- Notions of compensating variation:
- Reform that changes the price vector from \mathbf{p} to \mathbf{p}^{\prime}.
- Single agent, initial income x :

$$
C V=e\left(\mathbf{p}^{\prime}, v(\mathbf{p}, x)\right)-x
$$

- Collective framework:

Definition (Chiappori 2005)

Potentially compensating variation: amount such that agents could both reach the same utility level as before the reform
Actually compensating variation: amount such that agents will both reach at least the same utility level as before the reform

Potentially compensating variation

Figure: Potentially compensating variation.

Actually compensating variation

Figure: Actually compensating variation.

Final comments

- Potential compensation:

Final comments

- Potential compensation:
- disregards actual decision processes

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:
- may lead to costly compensations, resulting in a bias in favor of the status quo

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:
- may lead to costly compensations, resulting in a bias in favor of the status quo
- De facto rewards (marginal) unfairness

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:
- may lead to costly compensations, resulting in a bias in favor of the status quo
- De facto rewards (marginal) unfairness
- Two remarks:

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:
- may lead to costly compensations, resulting in a bias in favor of the status quo
- De facto rewards (marginal) unfairness
- Two remarks:
- Inherent to any context in which the social planner cannot fully control intragroup redistribution

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:
- may lead to costly compensations, resulting in a bias in favor of the status quo
- De facto rewards (marginal) unfairness
- Two remarks:
- Inherent to any context in which the social planner cannot fully control intragroup redistribution
- Notion of distribution factors \rightarrow additional direction for public intervention.

Final comments

- Potential compensation:
- disregards actual decision processes
- ignores intra-household inequality.
- \rightarrow in a fully compensated household, the reform may worsen the situation of one of the members.
- Actual compensation:
- may lead to costly compensations, resulting in a bias in favor of the status quo
- De facto rewards (marginal) unfairness
- Two remarks:
- Inherent to any context in which the social planner cannot fully control intragroup redistribution
- Notion of distribution factors \rightarrow additional direction for public intervention.
- Ex: 'targeting' (benefit can be paid to the husband or to the wife, in cash or in kind, etc.)

