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Risk and Uncertainty (2/47)

The outcomes of policies are almost always unpredictable.
How should policy-makers cope with such unpredictability?
Economists conventionally distinguish two forms of unpredictability: risk
and uncertainty.
A decision involves risk if the possible outcomes can be assigned
probabilities in an unambiguous, objective way (e.g. by measuring
frequencies in historical data drawn from large, homogeneous population).
Examples:

I Weather forecasting.
I Insurance (property, automobile, workplace, crop, medical, etc.).
I Medical diagnosis, treatment, prognosis.

A decision involves uncertainty if the phenomena are sui generis, or so
poorly understood that we cannot assign clear probabilities to outcomes.
Examples:

I Macroeconomic policy.
I Climate change.
I National security and foreign policy.
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Decision Theory

(a crash course)



Risk: Lotteries and von Neumann and Morgenstern (4/47)

Let A := {a, b, c , . . .} be a set of outcomes.
A lottery is a device p which assigns a probability to each outcome in A
Formally, p is a probability distribution: p := (pa, pb, pc , . . .).
Let P = {p1,p2,p3, . . .} be a set of lotteries (e.g. due to different policies).
The problem of risk: How to pick the “best” lottery in P.
Let u be a utility function, which assigns a “utility” to each outcome in A.
The expected utility of a lottery p is then defined:

E(u,p) := pa u(a) + pb u(b) + pc u(c) + · · ·
The standard way to cope with risk is to choose the lottery which
maximizes expected utility. Question: Is this “rational”?
von Neumann-Morgenstern Theorem. Let ∆(A) be the set of all
lotteries over A. Let � be a preference order on ∆(A) which satisfies
certain axioms (describing “consistency” or “rationality”). Then there is
a utility function u on A such that � seeks to maximize the expected value
of u. That is for any lotteries p and q in ∆(A),(

p � q
)
⇐⇒

(
E(u,p) ≥ E(u,q)

)
.
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Uncertainty: Prospects and Savage (5/47)

Let S = {r , s, t, . . .} be a set of possible “states of the world”.
We don’t know which is the true state, or even their probabilities.
A prospect is a device f which assigns an outcome in A to each state in S.
(Formally, f is a function from S to A.)
If f (s) = a, this means, “If the state of the world turns out to be s, then
the prospect will yield the outcome a.”
Let F = {f , g , h, . . .} be a set of prospects (e.g. due to different policies).
The problem of uncertainty: How to pick the “best” prospect from F .
A subjective probability is a probability distribution p on S. It could
represent the “beliefs” of an agent about S.
For instance, if p(s) > p(t), then the agent believes that state s is “more
likely” than state t.
Let u be a utility function on the set of outcomes A.
The subjective expected utility of prospect f relative to u and p is defined:

E(f |u, p) := p(r) u[f (r)] + p(s) u[f (s)] + p(t) u[f (t)] + · · ·
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The standard way to cope with uncertainty is to choose the prospect which
maximizes subjective expected utility.

Question: Is this “rational”?

Savage’s Theorem. Suppose S is infinite. Let AS be the set of all
prospects involving S and A.
Let � be a preference order on AS which satisfies certain axioms
(describing “consistency” or “rationality”).
Then there is a utility function u on A and a nonatomic∗ subjective
probability p on S such that � seeks to maximize subjective expected
utility. That is: for any prospects f and g in AS ,(

f � g
)
⇐⇒

(
E(f |u, p) ≥ E(g |u, p)

)
.

Also, p is unique, and u is unique up to positive affine transformation.
(∗) Nonatomic means p(s) = 0 for all s in S .
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Risk and uncertainty in public policy (7/47)

Question: How can we extend the vNM-Savage theory to decision-making
for groups of people? In effect, this involves two kinds of aggregation:

I Aggregation across different states of nature (i.e. uncertainty).
I Aggregation across different people (i.e. social choice).

Furthermore, social aggregation could be applied either ex ante (i.e. before
the uncertainty is resolved) or ex post (i.e. after the uncertainty is resolved).
The problem is that these two forms of aggregation often clash.
Consider three natural guidelines for social choice under uncertainty:

I Statewise Dominance principle: If the lottery/prospect P produces
a better ex post social outcome than Q in every state of nature, then
P is ex ante better than Q. (Rationality; intertemporal consistency.)

I Ex ante Pareto principle: If everyone prefers lottery/prospect P over
Q, then society should prefer P over Q. (Nonpaternalism; contractarianism.)

I Egalitarianism: Ceteris paribus (or even ceteris not-so-paribus), it is
better to minimize inequality between people, both at the ex ante
stage and the ex post stage.

We shall see that these three principles are often in conflict.
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Prolog Crash course in decision theory.

I Risk: Harsanyi’s Social Aggregation Theorem.

II Uncertainty: Heterogeneity and spurious unanimity.

III Equality: The Diamond paradox.
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Harsanyi’s social aggregation theorem: hypotheses (10/47)

Let I := {Ann, Bob, Carl,. . .} be a set of people.
Let A be a set of social outcomes. Each social outcome in A yields an
outcome for each person in I, determining her consumption bundle, health,
autonomy and any other factors relevant to her well-being.
Let ∆(A) be the space of all lotteries over A (i.e.“social lotteries”).
Each policy corresponds to some element of ∆(A).
To choose the “best” policy, we need a social preference order � on ∆(A).
If � satisfies the vNM axioms of “rationality”, then there is some ex ante
social welfare function (SWF) W on A such that � maximizes the
expected value of W :

For any p and q in ∆(A),
(
p � q

)
⇐⇒

(
E(W ,p) ≥ E(W ,q)

)
.

Every individual i in I has a preference order �i over ∆(A).
If �i satisfies the vNM axioms of “rationality”, then there is some utility
function ui on A such that �i maximizes the expected value of ui :

For any p and q in ∆(A),
(
p �i q

)
⇐⇒

(
E(ui ,p) ≥ E(ui ,q)

)
.
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Harsanyi’s social aggregation theorem (11/47)

For any p and q in ∆(A),

Individual vNM: For all i in I,
(
p �i q

)
⇔
(
E(ui ,p) ≥ E(ui ,q)

)
.

Group vNM:
(
p � q

)
⇔
(
E(W ,p) ≥ E(W ,q)

)
.

Finally, we suppose � satisfies the ex ante Pareto principle:

XAP: For any p and q in ∆(A), if p �i q for all i in I, then p � q.
If, furthermore, p �i q for some i in I, then p � q.

Harsanyi’s Social Aggregation Theorem (1955) Suppose that the
individual preferences �i all satisfy Individual vNM and the social
preference � satisfies Group vNM and XAP.
Then the ex ante social welfare function W is weighted utilitarian. That is,
there exist weights ci > 0 for all individuals i in I, and some constant K ,
such that, for any outcome a in A, we have

W (a) = K + cAnn uAnn(a) + c
Bob

u
Bob

(a) + c
Carl

u
Carl

(a) + · · ·
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Harsanyi and his discontents (12/47)

I Harsanyi interpreted his SAT as an argument for utilitarianism.

I But Sen argued that Harsanyi’s SAT was merely a hollow formal
“representation” result, without real ethical content.

I In particular, Sen argued that a vNM utility function conflated an
individual’s risk preferences with her well-being; hence an aggregate of
vNM utilites is not really a measure of social welfare.

I But the SAT is also vulnerable to another serious criticism.

I It assumes a setting of risk, where probabilities are objective, and
known to everyone.

I But many policy problems involve uncertainty.

I Each individual might have her own subjective probabilities (à la
Savage), but there is no reason for these subjective probabilites to
agree.

I It turns out that Harsanyi’s theorem is fundamentally incompatible
with such heterogeneity of beliefs.
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Social prospects (14/47)

Let S be an (infinite) set of states of the world. Let A be a set of outcomes.
Let AS be the set of all social prospects (mapping states to outcomes).
Let I be a set of people. For all i in I, let �i be a preference order on AS .
If �i satisfies the Savage axioms of “rationality”, then there is a utility
function ui on A, and a probability distribution pi on S yielding an SEU
representation for �i :

For all f and g in AS ,
(
f �i g

)
⇐⇒

(
E(f |ui , pi ) ≥ E(g |ui , pi )

)
.

Let � be a social preference order over AS .
If � satisfies the Savage axioms of “rationality”, then there is an ex ante
social welfare function W on A, and a probability distribution P on S,
yielding an SEU representation for �:

For all f and g in AS ,
(
f � g

)
⇐⇒

(
E(f |W ,P) ≥ E(g |W ,P)

)
.

(For technical reasons, we also assume that S is infinite, and pi and P are nonatomic

—i.e. pi (s) = 0 = P(s) for all s in S.)
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Individual SEU: For all i in I, and all f and g in AS ,(
f �i g

)
⇐⇒

(
E(f |ui , pi ) ≥ E(g |ui , pi )

)
.

Group SEU:
(
f � g

)
⇐⇒

(
E(f |W ,P) ≥ E(g |W ,P)

)
.

Finally, we suppose � satisfies the ex ante Pareto principle:

XAP: For any f and g in AS , if f �i g for all i in I, then f � g .
If, furthermore, f �i g for some i in I, then f � g .

Bayesian Social Aggregation Theorem: Suppose that �i all satisfy
Individual SEU, and suppose � satisfies Group SEU and XAP.
Then the social welfare function W is weighted utilitarian: there exist
weights ci > 0 for all individuals i in I, and some constant K , such that

W = K + cAnn uAnn + c
Bob

u
Bob

+ c
Carl

u
Carl

+ · · ·

However, if the individual utility functions are sufficiently diverse, then this
can only happen if everyone has the same beliefs:

pAnn = p
Bob

= p
Carl

= · · · = P.
If agents have different beliefs, then Group SEU and XAP are incompatible.
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This “probability agreement” result was intuited by Raiffa (1968). Early
versions were obtained by Starr (1973), Hylland & Zeckhauser (1979),
Hammond (1981), Broome (1991), and others.
The version we present here is due to Mongin (1995).

It is highly unlikely that all agents will agree about subjective probabilities.

Thus, this result is interpreted as an impossibility theorem, saying, in effect,

“Consistent Bayesian aggregation is impossible if agents have
heterogeneous beliefs.”
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The version we present here is due to Mongin (1995).

It is highly unlikely that all agents will agree about subjective probabilities.

Thus, this result is interpreted as an impossibility theorem, saying, in effect,

“Consistent Bayesian aggregation is impossible if agents have
heterogeneous beliefs.”



Bayesian Social Aggregation Theorem: Suppose all the �i satisfy Individual SEU, and
suppose � satisfies Group SEU and XAP. Then there exist weights ci > 0 for all i in I,
and some constant K , such that

W = K + cAnn uAnn + cBob uBob + cCarl uCarl + · · ·
If {ui}i∈I are sufficiently diverse, this can only happen if everyone has the same beliefs:

pAnn = pBob = pCarl = · · · = P.
If agents have different beliefs, then Group SEU and XAP are incompatible.

Possible escapes: Perhaps Individual SEU and Group SEU demand too
much “rationality” from the agents.
Can we escape by requiring a weaker degree of “rationality”?

Also, we assumed S was infinite and pi and P were nonatomic.
Are these “technical” assumptions driving the result?

Finally, we assumed that �i and � were defined for all prospects in AS .
But many prospects in AS may be unfeasible, or even logically impossible.
Can we escape by weakening this “universal domain” assumption?

Sadly, no. The conclusions of the BSAT (i.e. utilitarianism + “probability
agreement”) remain in force even if we relax the “universal domain”
assumption, allow S to be finite, and only require the agents to satisfy
Statewise Dominance (“minimal rationality”), rather than being SEU
maximizers (M&P, 2013, extending Blackorby, Donaldson & Mongin, 2004).
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Spurious Unanimity (18/47)

Statewise Dominance seems non-negotiable. Is Ex ante Pareto the culprit?
Indeed, Ex ante Pareto is already suspect, for other reasons.
To see this, suppose S = {h, t} and I = {Ann, Bob}, with the beliefs:

h t

Ann’s probability 0.9 0.1

Bob’s probability 0.1 0.9
(i.e. pAnn(h) = 0.9, etc.)

Consider two social prospects X and Y, with payoffs defined as follows:

X :=

h t

Ann 10 − 20

Bob − 20 10
Y :=

h t

Ann 0 0

Bob 0 0

X �A Y, because E(X|uA, pA) = 7 > 0 = E(Y|uA, pA). Likewise, X �B Y.
Thus, Ex ante Pareto dictates that X �xa Y.
But A&B’s ex ante unanimity is “spurious”, arising from different beliefs.
At least one of Ann or Bob must be wrong.
Indeed, if the ex post social preference �xp is utilitarian, then xh ≺xp yh and
xt ≺xp yt . Thus, Group Statewise Dominance dictates that X ≺xa Y.
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Gilboa, Samet & Schmeidler: restricted ex ante Pareto (19/47)

Idea: Weaken ex ante Pareto to avoid such cases of “spurious unanimity”.

Gilboa, Samet, and Schmeidler (2004) suppose each individual i is an
SEU-maximizer with a utility function ui and probabilistic beliefs pi on an
infinite set S of states of nature.

Let B be the set of events on whose probabilites all agents agree.
(Formally B := {E ⊆ S; pi [E ] = pj [E ], for all i and j in I}.)

A prospect f in AS is admissible if it only depends on information in B.
(Formally, this means f is B-measurable: f −1(E) ∈ B for any measurable E ⊆ A.)

GSS restrict the ex ante Pareto condition to apply only to comparisons
between admissible prospects (thereby excluding spurious unanimity.)
Theorem. (GSS) Let W be an ex post social welfare function on A, let P
be a probability distribution on S, and let � be the ex ante social
preference relation on AS which maximizes the P-expected value of W .
Then � satisfies the ex ante Pareto condition restricted to admissible
prospects if and only if W is a weighted utilitarian sum of the individual
utilities ui , and P is a weighted average of the individual probabilities pi .
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Gilboa, Samet & Schmeidler: restricted ex ante Pareto (20/47)

Theorem. (GSS) Let W be an ex post SWF on A, let P be a probability on S, and let �
be the ex ante preference relation on AS which maximizes the P-expected value of W .

Then � satisfies the restricted ex ante Pareto condition ⇐⇒ W is a weighted utilitarian

sum of the utilities {ui}, and P is a weighted average of the probabilities {pi}.

This seems like a perfect solution. It does not require probability
agreement, and it is not susceptible to spurious unanimity. . . . . . . . Or is it?

Suppose S = {r , s, t} and I = {Ann, Bob}.

Assume two prospects, f and g , which yield the same
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Gilboa,Samet&Schmeidler: spurious unanimity returns (21/47)

Info r s t

Prior 0.49 0.02 0.49

Ann {r,s} 0.96 0.04 0

Bob {s,t} 0 0.04 0.96

r s t

f 100 0 100

g 0 100 0

Ann & Bob agree: Expected Utility(f ) = 96, while Expected Utility(g) = 4.

Thus, f �Ann g and f �
Bob

g .

Furthermore, B = {S, {r , t}, {s}, ∅}, so both f and g are admissible.

Thus, even GSS’s restricted ex ante Pareto dictates that f �xa g .

Indeed, if P is the average of Ann’s and Bob’s beliefs (as GSS recommend),
then P also says Expected SWF(f ) = 96, while Expected SWF(g) = 4.

However, clearly, the true state is s.

Thus, g is actually the better choice.

By ignoring private information, the GSS theorem gets the wrong answer.
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Objective vs. subjective uncertainty (22/47)

GSS attempt to distinguish between “legitimate” unanimity and “spurious”
unanimity by an endogenous criterion: the agreement set B.
But this attempt fails. Maybe instead we should use an exogenous criterion.

Idea: We should distinguish between objective randomness (i.e. “risk”) and
subjective randomness (arising from “uncertainty”).

• Ex ante Pareto only makes sense for objective randomness, where the
agents can agree for legitimate reasons.
• Ex ante Pareto is never appropriate for subjective randomness, where

“spurious unanimity” is possible.

M & P (2013) consider a model of social choice which with two
independent sources of randomness: one objective and one subjective.

They apply ex ante Pareto only to the agents’ preferences over objective
randomness. This yields a new version of the Social Aggregation Theorem:

• Ex ante social preferences maximize expected value of a utilitarian SWF.
• All agents must have the same beliefs about the objective randomness.
• But they can have different beliefs about the subjective randomness.
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Equality:

The Diamond Paradox



The Diamond Paradox (24/47)

Statewise Dominance is the “minimal” criterion for rational choice.
But Statewise Dominance can contradict our intuitions about fairness.
Suppose S = {h, t} and I = {Ann,Bob}. Suppose F and G are social
prospects that yield state-contingent payoffs as follows (Diamond, 1967):

F h t

Ann 1 0

Bob 0 1

G h t

Ann 1 1

Bob 0 0

(Canonical example: allocating a hard candy to one of two children.)

Let �xp be an impartial ex post social preference order. So
[

1
0

]
≈xp

[
0
1

]
.

Thus, F (h) ≈xp G (h) and F (t) ≈xp G (t).

Thus, Statewise Dominance implies that F ≈xa G .

But this contradicts our intuition: F is fair, while G is unfair.

(Note: This paradox does not depend on SEU or subjective beliefs.)
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Ex ante egalitarianism vs. ex post egalitarianism (25/47)

F h t

Ann 1 0

Bob 0 1

G h t

Ann 1 1

Bob 0 0

Our ethical intuitions in Diamond’s Paradox exemplify ex ante
egalitarianism —that is, applying egalitarian principles to the expected
utilities of the agents, before the resolution of uncertainty.

Formally, this means comparing social prospects by applying an (impartial,
egalitarian) ex ante social welfare function Wxa to the ensemble of expected
utilities of the agents.

For simplicity, suppose Probability(h) = 1
2 =Probability(t).

Let EUA(F ) :=expected utility of Ann in prospect F , etc.

Thus, EUA(F ) = 1
2 = EUB(F ), whereas EUA(G ) = 1 and EUB(G ) = 0.

Thus, F �xa G because

Wxa [EUA(F ),EUB(F )] = Wxa

(
1
2 ,

1
2

)
>Wxa(1, 0) = Wxa [EUA(G ),EUB(G )] .
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Ex ante egalitarianism vs. ex post egalitarianism (26/47)

F h t

Ann 1 0

Bob 0 1

G h t

Ann 1 1

Bob 0 0

This is to be contrasted with ex post egalitarianism, which applies
egalitarian principles to social outcomes, after the resolution of uncertainty.

Formally, this means comparing social prospects by applying an (impartial,
egalitarian) ex post social welfare function Wxp to each social outcome, and
then computing the expected value of Wxp .

We have Wxp

(
1
0

)
= C = Wxp

(
0
1

)
for some constant C .

Thus, F ≈xa G because

1

2
Wxp [F (h)] +

1

2
Wxp [F (t)] =

1

2
C +

1

2
C =

1

2
Wxp [G (h)] +

1

2
Wxp [G (t)] .

Thus, Diamond’s Paradox reveals a disagreement between ex ante
egalitarianism and ex post egalitarianism.
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Ex ante egalitarianism vs. ex post egalitarianism (27/47)

In Diamond’s Paradox, ex post egalitarianism gets the “wrong” answer.
This suggests that ex ante egalitarianism is superior.
But consider the following three social prospects:

F h t

Ann 1 0

Bob 0 1

E h t

Ann 1/2
1/2

Bob 1/2
1/2

H h t

Ann 1 0

Bob 1 0

E and H yield more egalitarian outcomes than F in both states of nature.
So ex post egalitarianism would prefer both E and H over F .
(Meanwhile, the choice between E and H might be based on social risk aversion.)

But all three prospects yield the same expected utility (1/2) for each agent.
So ex ante egalitarianism would be indifferent between them.
In this case, it is ex ante egalitarianism which gets the “wrong” answer.
Furthermore, XAE and XPE each suffer from a critical flaw.

I XAE violates the Statewise Dominance axiom (so it is “irrational”).
I XPE violates the ex ante Pareto axiom (so it is“paternalistic”).

It seems that neither approach is really optimal. Instead, we should employ
a “hybrid” of XAE and XPE (Ben Porath, Gilboa & Schmeidler; Gajdos & Maurin).
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(Meanwhile, the choice between E and H might be based on social risk aversion.)

But all three prospects yield the same expected utility (1/2) for each agent.
So ex ante egalitarianism would be indifferent between them.
In this case, it is ex ante egalitarianism which gets the “wrong” answer.
Furthermore, XAE and XPE each suffer from a critical flaw.

I XAE violates the Statewise Dominance axiom (so it is “irrational”).
I XPE violates the ex ante Pareto axiom (so it is“paternalistic”).

It seems that neither approach is really optimal. Instead, we should employ
a “hybrid” of XAE and XPE (Ben Porath, Gilboa & Schmeidler; Gajdos & Maurin).
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Fleurbaey: expected equally distributed equivalent rankings (28/47)

A problem with these “hybrids” of XAE and XPE is that we might end up
with the worst features of both.

Instead, Fleurbaey (2010) argued that we should try to combine the best
features of XAE and XPE.

He proposed to rank such prospects by the expected value of an ex post
SWF Wxp having the property: Wxp(u, u, . . . , u) = u, for any u in R.

He called these expected equally distributed equivalent (EEDE) rankings.

An egalitarian prospect is one which yields
a perfectly egalitarian social outcome in
every state. For example:

F s1 s2 s3 s4 s5

Ann 3 0 5 2 −1

Bob 3 0 5 2 −1

Carol 3 0 5 2 −1

If F is egalitarian, then Expected Value(Wxp ,F )=Expected Utilityi (F ) for
every individual i in I (assuming common probabilistic beliefs).

Thus, EEDE satisfies ex ante Pareto, when comparing egalitarian prospects.
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Fleurbaey: EEDE rankings (29/47)

A riskless prospect is one where each per-
son gets the same outcome in every state.
For example:

F s1 s2 s3 s4 s5

Ann 3 3 3 3 3

Bob 5 5 5 5 5

Carol 1 1 1 1 1

Any XPE ranking satisfies ex ante Pareto if comparing riskless prospects.

And any XPE ranking satisfies Statewise Dominance.

In fact, these three properties characterise the EEDE rankings.

Theorem. (Fleurbaey, 2010) Let � be a ranking of all social prospects.
Then � satisfies Statewise Dominance, ex ante Pareto for riskless
prospects, and ex ante Pareto for egalitarian prospects, if and only if � is
an EEDE ranking.

By extending ex ante Pareto to “non-reranking prospects”, Fleurbaey also
characterized two subclasses of EEDE rankings: ex post generalized Gini
and ex post leximin.
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Conclusion (30/47)

Social choice under uncertainty becomes surprisingly complicated, once
issues of fairness and heterogeneity come into play.
However, there are also other problems we haven’t even discussed...

I Increasing ex post equality correlates individuals’ risks, meaning greater
collective risk, ex ante. So there is a tradeoff between egalitarianism
and social risk-aversion. (e.g. Keeney, 1980; Fishburn & Straffin, 1989).

I Diamond argued that “fairness” requires a coin toss. But if it was
necessary to flip the coin once, why not flip it again? To avoid falling
into an infinite cycle of coin flips, it seems that our ex post SWF must
be history-dependent (Machina, 1988; Hayashi, 2013).

I Ex ante Pareto assumes people face uncertainty“rationally” (e.g. are
SEU maximizers), and that the utility they maximize ex ante
accurately predicts their welfare ex post. But empirically, neither claim
is true (e.g. Kahneman & Schkade, 1998).

I This suggests we turn away from ex ante and towards ex post. But in
a sense, there no such thing as ex post (e.g. Hild, Jeffrey & Risse, 1997).

There is no “end of history” when all uncertainty has been resolved.
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a sense, there no such thing as ex post (e.g. Hild, Jeffrey & Risse, 1997).

There is no “end of history” when all uncertainty has been resolved.



Thank you.
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Appendix A

Sen’s objections to Harsanyi’s SAT



Harsanyi’s Social Aggregation Theorem: If �i all satisfy Individual vNM and
� satisfies Group vNM and XAP, then there are weights ci > 0 for all i in I, and
a constant K , such that, for any a in A, we have
W (a) = K + cAnn uAnn(a) + c

Bob
u

Bob
(a) + c

Carl
u

Carl
(a) + · · ·

Harsanyi interpreted his SAT as an argument for utilitarianism.
But Sen made three objections to this interpretation....
(S1) The SAT just says that any � satisfying Group vNM and XAP can
be interpreted as if it came from some weighted utilitarian social welfare
function, for some suitable choice of weights cAnn , cBob

, c
Carl

, . . .
But it doesn’t tell us how to obtain these weights. Nor does it tell us how
they should change if �Ann ,�Bob

,�
Carl

, . . . change. It doesn’t give us a
“profile-independent” formula for W as a function of uAnn , uBob

, u
Carl

, . . .

(S2) The vNM utility functions ui are only defined up to multiplication by
a constant: If ui represents �i , then so does 3 · ui .
Thus, the weights ci are also only defined up to multiplication by a
constant. (If we replace uAnn with 3 uAnn , then we replace cAnn with cAnn/3.)

(S3) ui represents person i ’s preferences over lotteries. But it isn’t clear ui
really measures i ’s well-being. So W is not really “utilitarian” —it is an
aggregate of “lottery preferences”, not an aggregate of well-being per se.
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“(S3) ui represents person i ’s preferences over lotteries. But it isn’t clear ui really

measures i ’s well-being. So W is not really ‘utilitarian’ —it is an aggregate of

‘lottery preferences’, not an aggregate of well-being per se.”

To appreciate this, suppose wi is person i ’s “true” welfare function. (So
wi (a)= the welfare of person i in outcome a.)
Assuming i is self-interested, her vNM utility function ui should have the
form ui (a) = φi [wi (a)], where φi is some increasing function.
The shape of φi expresses i ’s “risk attitudes”. For example:

I if i is risk-averse, then φi is concave.

I If i is risk-prone then φi is convex.

But there is no reason to suppose that φi is linear.
Thus, Harsanyi’s SAT actually characterizes an ex ante SWF of the form:

W (a) = K+cAnn φAnn [wAnn(a)]+c
Bob

φ
Bob

[w
Bob

(a)]+c
Carl

φ
Carl

[w
Carl

(a)]+· · ·

This does not invalidate SAT’s analysis of social choice under uncertainty.
It merely invalidates Harsanyi’s “utilitarian” interpretation of the SAT.
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“(S1) The SAT says � can be interpreted as if it came from some weighted
utilitarian SWF... But it doesn’t tell us how to obtain these weights.
(S2) The vNM utility functions ui are only defined up to multiplication by a
constant. Thus, the weights ci are also only defined up to multiplication by a
constant. ”

One solution is to supplement the SAT with a rule to “normalize” the vNM
utility functions.
For example, Dhillon and Mertens axiomatically characterized the relative
utilitarian ex ante social welfare function RU, defined

RU(a) :=
uAnn(a)

RAnn

+
u
Bob

(a)

R
Bob

+
u
Carl

(a)

R
Carl

+ · · · for all a in A.

Here, for all i in I, Ri := max{ui (a); a ∈ A} −min{ui (a); a ∈ A}.
Thus, for all i in I, the function ui/Ri ranges over an interval of length 1.
So everyone has equal “weight”, in some sense.
But it’s not clear this renormalization is ethically appropriate.
For example, there may be a legitimate reason why Ann has much more
intense preferences over A than Bob does. Perhaps she has a much greater
stake in the outcomes. Relative utilitarianism neglects these differences.
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utilitarian ex ante social welfare function RU, defined

RU(a) :=
uAnn(a)

RAnn

+
u
Bob

(a)
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Bob

+
u
Carl
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R
Carl

+ · · · for all a in A.

Here, for all i in I, Ri := max{ui (a); a ∈ A} −min{ui (a); a ∈ A}.
Thus, for all i in I, the function ui/Ri ranges over an interval of length 1.
So everyone has equal “weight”, in some sense.
But it’s not clear this renormalization is ethically appropriate.
For example, there may be a legitimate reason why Ann has much more
intense preferences over A than Bob does. Perhaps she has a much greater
stake in the outcomes. Relative utilitarianism neglects these differences.
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Appendix B

Bayesian social aggregation with
minimal hypotheses



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Let S be a finite set of states.
We now define an individual prospect to be a device x which assigns a
real-valued “payoff” xs (e.g. an income or utility level) to each state s ∈ S .
(Formally, this means that x is an S-dimensional vector of real numbers.)

Let I be a set of individuals. For all i ∈ I, let X i be the set of individual
prospects which are feasible for i (a subset of RS).
Let �i be individual i ’s ex ante preference order on X i .

Instead of the Savage SEU axioms, we will now only require:

Individual statewise dominance: For all x and y in X i , if xs ≥ ys for all s
in S, then x �i y. If, also, xs > ys for some s in S, then x �i y.

We define a social outcome to be a device x which assigns a real-valued
“payoff” x i to each individual i in I.
(Formally, this means that x is an I-dimensional vector of real numbers.)

Let Xxp be the set of feasible social outcomes (a subset of RI).
Let �xp be an ex post social preference order on Xxp . We will require:

Ex post Pareto: For all outcomes x and y in Xxp , if x i ≥ y i for all i in I,
then x �xp y. If, also, x i > y i for some i in I, then x �xp y.



Finally, we will define a social prospect to be a device X which assigns a
social outcome xs to each state s ∈ S .

Equivalently, X assigns an individual prospect xi to each person i in I.

Equivalently, X yields a real-valued “payoff” x is to all i in I, for all s in S.
(Formally, this means X is an I × S matrix of real numbers).

Let X be the set of feasible individual prospects (a subset of RI×S).

Let �xa be the ex ante social preference order on X . We will require

For all social prospects X and Y in X :

I Ex ante Pareto: If xi � yi for all i in I, then X �xa Y.
If, furthermore, xi �i yi for some i in I, then X �xa Y.

I Group Statewise Dominance: If xs �xp ys for all s in S, then
X �xa Y. If, also, xs �xp ys for some s in S, then X �xa Y.

I Continuity: The set {W ∈ X ; W �xa X} is closed.
The set {Z ∈ X ; Z �xa X} is also closed.
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Theorem. (M & P, 2013, extending Blackorby, Donaldson & Mongin, 2004) Let X be an
open, connected subset of RI×S (also with two other connectivity
conditions). For all i in I, let �i be individual i ’s ex ante preference order
on X i . Let �xp be an ex post social preference order on Xxp . Suppose

I either �xp satisfies Ex post Pareto;
I or �i satisfies Individual Statewise Dominance, for all i in I.

Finally, let �xa be an ex ante social preference order on X .
If �xa satisfies Continuity, Group Statewise Dominance, and Ex ante
Pareto, then there is a (unique) probability P on S, and for all i in I, there
are (unique) increasing, continuous utility functions ui , such that:
(a) For all i in I, the order �i maximizes the P-expected value of ui .
(b) �xp is represented by the utilitarian ex post social welfare function Wxp

defined by Wxp(x) :=
∑

i∈I u
i (x i ), for all x ∈ Xxp .

(c) The ex ante order �xa maximizes the P-expected value of Wxp .

Upshot: Even if we weaken the Savage axioms to Statewise Dominance
(perhaps the weakest “rationality” axiom imaginable), we still get all the
conclusions of the Bayesian Social Aggregation Theorem.
The ex post social welfare function Wxp is utilitarian, all agents are SEU
maximizers, and all agents must have the same beliefs.
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It is important to stipulate that these payoff tables provide a complete
description of the problem.
We must exclude any anticipation, bitterness, or guilt from the story —or
stipulate that these effects are already accounted for in the payoff tables.
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Then their total payoffs (time 0 + time 1) are as shown in the new table.
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On the other hand, suppose that Bob felt some “bitterness” −β due to his
unfair treatment in prospect G .
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On the other hand, suppose that Bob felt some “bitterness” −β due to his
unfair treatment in prospect G .

Then his actual payoffs would be as shown in the revised table.
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stipulate that these effects are already accounted for in the payoff tables.

Or, suppose we include the decision-maker, Carol, as a third agent.
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It is important to stipulate that these payoff tables provide a complete
description of the problem.
We must exclude any anticipation, bitterness, or guilt from the story —or
stipulate that these effects are already accounted for in the payoff tables.

Or, suppose we include the decision-maker, Carol, as a third agent.
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Ben-Porath, Gilboa & Schmeidler: min-of-means (45/47)

Ben-Porath, Gilboa & Schmeidler (1997) axiomatically characterized the
so-called min of means method of evaluating social prospects.
To illustrate this, consider the following four matrices of weightings:

A =

[
0.3 0.4
0.2 0.1
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, B =

[
0.4 0.3
0.1 0.2

]
, C =

[
0.1 0.2
0.4 0.3
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, D =

[
0.2 0.1
0.3 0.4

]
.
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E h t
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1/2
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1/2

MoM: 0.5
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The A-weighted mean of F is 0.3 · 1 + 0.4 · 0 + 0.2 · 0 + 0.1 · 1 = 0.4.
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To illustrate this, consider the following four matrices of weightings:

A =

[
0.3 0.4
0.2 0.1
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, B =
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0.4 0.3
0.1 0.2

]
, C =

[
0.1 0.2
0.4 0.3

]
, D =
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0.2 0.1
0.3 0.4

]
.

Consider the following three social prospects:

F h t
Ann 1 0
Bob 0 1
MoM: 0.4

G h t
Ann 1 1
Bob 0 0
MoM: 0.3

E h t
Ann 1/2

1/2

Bob 1/2
1/2

MoM: 0.5

The A-weighted mean of G is 0.3 · 1 + 0.4 · 1 + 0.2 · 0 + 0.1 · 0 = 0.7.
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2 (0.1 + 0.2 + 0.3 + 0.4) = 0.5.
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Gajdos & Maurin: weighted cross-iterative evaluations (46/47)

Social prospect: F =
A

B

ε−→ ε(F ) =
ω−→ ω ∗ ε(F )yω ↓

ω(F ) = ↓yε ↓
ε ∗ ω(F ) −→ φ(F ) = λ ε ∗ ω(F ) + (1− λ)ω ∗ ε(F )

Let F be a social prospect (indexed by states and people).
Let ω be an ex post social welfare function, which acts on ex post social
outcomes expressed as utility vectors.
Apply ω to each outcome of F , to get a vector ω(F ) ex post social welfare
levels, indexed by states.

Let ε be a sort of “generalized expectation” operator, which acts on ex ante
prospects, expressed as state-contingent payoff vectors.
Apply ε to each individual prospect contained in F , to get a vector ε(F ) of
“expected utilities”, indexed by individuals.

We then define ω ∗ ε(F ) := ω[ε(F )] (a sort of generalized XAE evaluation).
Likewise, we define ε ∗ ω(F ) := ε(ω[F ]) (a generalized XPE evaluation).

Finally, define Φ(F ) := λ ε ∗ ω(F ) + (1− λ)ω ∗ ε(F ), for some 0 ≤ λ ≤ 1.
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BG&S (’97) showed that, if ω and ε are M.o.M’s, then φ is also an M.o.M.
Gajdos and Maurin (2004) investigated other ex ante social evaluations
with a similar structure (where ε and ω are not necessarily M.o.M’s).

They allowed λ to depend on F (subject to certain restrictions), and refered
to φ as a weighted cross-iterative (WCI) evaluation.

In effect, φ is a sort of “compromise” between XAE and XPE.

G&M axiomatically characterized various other families of WCI evaluations.

For example, certain axioms single out social evaluations of the form

φ(F ) := λ ·M(F ) + (1− λ)M(F ), where

M(F ) := min {ε ∗ ω(F ), ω ∗ ε(F )} and M(F ) := max {ε ∗ ω(F ), ω ∗ ε(F )}.
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